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We introduce correlated growth into a restricted solid on solid model (RSOS), 
a stochastic deposition model with a constraint on neighboring height differen- 
ces. A two-dimensional lattice model is used in which particles are deposited via 
horizontal Levy flight steps with a step length distribution exponent f. Though 
RSOS is in the same universality class as ballistic deposition for uncorrelated 
deposition, it appears to depart from it for strong correlations. For f =  1, the 
short-range limit is reached and both exponents fl and X, which describe the 
dependence of surface width on time and strip length, tend to 1. For f > 1 we 
retreat to an enhanced algorithm, searching for growth sites which become 
excessively rare. We find an unusual short-time dependence, but g still tends 
to 1. The number of growth sites G shows saturation for f <  1, while for f~> 1 
we observe G/L ~ 0 as the strip length L increases. Finally, we test directly the 
relationship of noise-noise correlation strength to f, and find that a direct 
comparison between correlated growth models and theoretical predictions for 
growth with correlated noise is so far unjustified. 

KEY WORDS: Growth; deposition; noise; correlation; roughness; stochastic. 

1. CORRELATED DEPOSITION MODELS FOR 
ROUGH SURFACES 

T h e  idea  o f  spa t ia l ly  c o r r e l a t e d  d e p o s i t i o n  for  c lus te r  g r o w t h  m o d e l s  was  

i n t r o d u c e d  in s tudies  of  the  f rac ta l  d i m e n s i o n  o f  g r o w t h  per imeters .  (1) 

"Bu t t e r f ly"  d e p o s i t i o n  was  p r o p o s e d  wi th  d e p o s i t i o n  stes c h o s e n  a c c o r d i n g  

to a res t r i c ted  L e v y  f l ight  p r o b a b i l i t y  d i s t r i b u t i o n  
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where r is the distance from a current deposition site to the next and f is 
a step length distribution exponent. Thus, the rough surface becomes 
correlated unto itself, which may correspond to the existence of charged 
impurities. Since the mean step length depends on f ,  we can recognize the 
following patterns of deposition. For f = - 1 the deposition is uncorrelated, 
according to a chosen growth model. For 0 < f < 1, in the long-range limit, 
the next deposition still may occur very far away from a current site. For 
f >  1, in the short-range limit, the particles tend to be deposited as close 
as possible. It is clear that the surface roughness could be tuned by the 
parameter f .  The dependence of critical exponents characterizing surface 
roughness on the parameter f is the focus of this paper. The importance of 
understanding the deposition processes, e.g., vapor deposition and 
electron-beam evaporation, is well recognized in materials research. (2) The 
studies of growth models with correlated noise which are easy to simulate 
may help gain insight into the nature of noise inherent in deposition 
processes. 

The "butterfly" deposition algorithm becomes even more transparent 
when realized on a flat strip, leading to columnar growth. Two possible 
cases of surface roughening are clearly distinguished. The simplest case is 
the deposition according to a horizontal Levy flight only, the distance r 
between columns being measured horizontally. Spatially correlated noise 
should result if all columns can grow with no restriction, as is the case with 
ballistic deposition, c3) With somewhat restricted deposition, i.e., when not 
all columns possess a growth site at a given time, the distinction between 
spatial and temporal noise correlations is not quite obvious. Such is a case 
considered in this paper, where correlated RSOS model is studied. 

The second case is the literal realization of the "butterfly" model on 
the strip, when height differences play as much a role as distances between 
the columns. In this case the temporal noise correlations are bound to be 
felt. A variation of this model is possible, of course, in which only height 
differences contribute to the "butterfly" probability. We expect that the 
second case should exhibit a different roughness dynamics and thus belong 
to a different universality class than the first. (4) One would also expect that 
the restricted deposition falls into a second case or at least exhibits some 
features different from the first case. In fact, this is what we have found 
numerically, and this is the main result of our paper. 

Rough surfaces are characterized (5) by the surface width co, 

(D = ( ( h ) -  ( h ) 2 )  1/2 (2) 

where h is height and ( - - - )  denotes averaging over the whole surface. 
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Exponents Z and z describe the dependence of the surface width m on strip 
length L and time t (average height ( h ) ) ,  according to a scaling law (6~ 

~o(t, L )  = L Z f ( t / L  z) (3) 

where the scaling function f ( x )  is defined by 

~x p, x ,~ 1 
f ( x )  ~ / const, x >> 1 (4) 

and/~ = X/z. 
Thus, two well-understood limits are observed for uncorrelated noise: 

at t ~ L z, 09,,~ t ~ (short times) and at t>> L z, coN L z (saturation). 
Three models of deposition with random noise were recently found 

to belong to the same universality class with exponents f l=  1/3 and 
Z= 1/2 in two dimensions, in accordance with the theoretical model of 
Kardar  et  al., ~7) based on the nonlinear Langevin equation 

Oh/Ot = v VZh + 2/2(Vh) 2 + r/(x, t) (5) 

where v, )~ are parameters and q(x ,  t) is random noise. These three models 
are the Eden model, (8) ballistic deposition, ~9) and the recent RSOS model 
of Kim and Kosterlitz. ~lm While the first two models have notoriously 
long-lived transients, the latter model turns out to be exceptionally well 
converging, with excellent results even for short strips. In fact, ref. 3 quotes 
fl--0.308 +_ 0.011 for uncorrelated balistic deposition based on sizes up to 
L - - 1 0  6, while we were able to get / /=  0.330 + 0.001 for L = 1000 in the 
RSOS model. Thus, we have chosen RSOS to study the effects of noise 
correlations on surface roughness, hoping to be able to obtain reliable 
results for reasonable system sizes. In addition, as explained above, we 
expected to find some new features for correlated noise, RSOS being a 
restricted deposition model. The model consists of random deposition with 
a restriction that the neighboring columns should differ in height by no 
more than n (we take n = 1 everywhere). In the case of correlated deposi- 
tion in the RSOS model, for f sufficiently large, a deposition will occur 
next to a previous one. In this case, the height constraint becomes very 
relevant by restricting the configuration to have hills of maximum slope, 
with no flat sections. This is a special feature of the RSOS correlated 
deposition model, and is not present in other deposition models. 

Recently, a theoretical prediction was made by Medina et al/11) for the 
dependence of the exponents Z and z on the strength of noise correlations. 
For spatial noise correlations in two dimensions 

( , ( x ,  t )~l(x ' ,  t ' ) ) ~  I x - x ' l  2p- I  6 ( t - t ' )  (6) 

822/60/5-6-19 
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it was found that for p ~< 1/4, the exponents z = 3/2 and X = 1/2 remain 
unchanged (same as for random noise), while for 1 / 4 < p < 1  both 
exponents depend on p linearly, reaching 1 for p = 1. Notably, the predic- 
tion implies in two dimensions that at short times the surface is smoother 
than in the case of random deposition (fl < 1/2) for p < 1/2, and that the 
surface is rougher than in the case of random deposition (fl> 1/2) for 
p > 1/2. In addition, according to ref. 11, for 0 < p ~< 1 the exponents must 
obey ~ + z = 2 due to Galilean invariance, as they do for random noise. For 
2(> 1 the prediction is not applicable, since higher-order nonlinearities 
become relevant. 

The prediction of ref. 11 has been confirmed for ballistic deposition by 
Meakin and Jullien. (3) The spatial correlations were introduced via 
horizontal Levy flight (first case). Apart from the fact that the relation 
Z + z = 2 is not obeyed for p > 1/2, the agreement is quite good. However, 
there is no direct way to compare the parameter f to p. To this end, 
Meakin and Jullien conjectured the identity 

f =  2p (7) 

based on the concept of fractal codimension. For consistency, we followed 
ref. 3 in comparing our results to theory (11) via f =  2p. However, in this 
paper we attempt for the first time to verify numerically this identity, which 
forms the basis of a numerical comparison between the prediction (11) and 
any simulation using correlated deposition (1). Our analysis shows that 
such direct comparison is so far unjustified. 

In Section2 we present two new growth models for surfaces with 
tunable roughness. In Section 3 we present the results, compared with the 
prediction (ix) and with the simulation of Meakin and Jullien. (3) In Section 4 
we investigate the conjecture (7). Our conclusions are presented in 
Section 5. 

2. RSOS DEPOSIT ION M O D E L S  W I T H  CORRELATED NOISE 

The first model we use (further referred to as Model 1) is based on the 
original Kim and Kosterlitz algorithm (l~ with correlated noise introduced 
via horizontal Levy flight, following Meakin and Jullien.(3) Namely, we 
choose a step length 6x, using a random number uniformly distributed over 
the range 0 < R < 1, from 

6x = R - 1 i f  (8) 

The sign of 6x is positive or negative with equal probability. We trun- 
cate ~ix to an integer, and periodic boundary conditions are used to restrict 
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the column in which the deposition is made to within the strip of length L. 
Thus, the distribution of step lengths obeys (1). Then we check if the 
deposition is possible according to ref. 10, namely if the height differences 
between the neighboring columns do not exceed 1. If so, the particle is 
deposited; otherwise, we choose another step length 6x and check again. 
Note that since we have to deal with a large number of rejections, the 
growth dynamics appears to be different from ballistic deposition (a l l  
columns have one growth site) and from Eden deposition (all columns 
have at least one growth site). In fact, the number of growth sites G in the 
RSOS model decreases dramatically with time from its initial value G = L, 
and more so for strongly correlated noise (f~> 1). Due to this fact, the 
computer time becomes prohibitive, mostly being lost in searching for 
growth sites. 

Thus, we introduced an enhanced algorithm (further referred to as 
Model 2) in order to facilitate finding the growth sites for f~> 1. In Model 2 
the step length is chosen as in Model 1. Then, we either deposit the particle 
if the height restriction condition is fulfilled, or we search for the closest 
growth site and deposit it there. Note that Model2 is different from 
restructuring model, ~3~ since the nearest growth site may be higher as well 
as lower than the current growth site. It is not clear, however, whether the 
probability distribution of step lengths (1) is obeyed in Model 2. The 
proper way to choose growth sites according to (1), as described in ref. 1, 
requires optimizing computer time and will be reported elsewhere. ~13) We 
hoped, however, that for strongly correlated noise the Model2 would 
exhibit the same tendency as Model 1. 

3. RESULTS A N D  DISCUSSION 

We present the results of our simulations in two dimensions for 
Model 1 first. While the growing surface profile for the RSOS model with 
uncorrelated noise consists of undulating hills (see Fig. 1), the profile for 
strongly correlated noise is quite different. It consists, even for relatively 
short times, of almost perfect mountains (reminding one of a ziggurat), the 
height and width of which are of the order of strip length L (see Fig. 2). 
Such a visual appearance is characteristic for all f t> 1. Not surprisingly, 
one finds it almost impossible to proceed with simulations for f >  1: the 
growth sites become excessively rare and far from each other, while the 
chosen step length tends to be of the order 1. 

Thus, we present our results for the Model 1 only for f~< 1 (see 
Tables I and II). We compare our results directly to those of ballistic 
deposition. ~3) We follow the comparison made by ref. 3 between theoretical 
and numerical results via f =  2p (but see Section 4). We used moderate 
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Fig. 1. Surface profile for RSOS at f =  - 1 ;  L = 200. 
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Fig. 2. Part of surface profile for RSOS at f =  1; L = 1000. 
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Table I. Values Obtained for 13: Comparison wi th  Theoretical Predictions 
and Ballistic Deposition 

Correlation Predicted Ballistic 
exponent f p =f/2 value (m deposition ~3) Model 1 

Uncorrelated 
0 0 1/3 0.308 + (0.011 ) 0.330 + (0.001) 

1/4 1/8 1/3 0.347 _+ (0.001) 0.41 _+ (0.02) 
1/2 1/4 1/3 0.370 +_ (0.001) 0.46 _+ (0.03) 
2/3 1/3 0.381... - -  0.54 + (0.04) 
3/4 3/8 0.411... 0 .430_ (0.001) 0.61 _ (0.03) 

1 1/2 1/2 0.491 + (0.003) 1.00 _+ (0.05) ~13) 

strip lengths, typically up to L = 2000, averaged over 200-500 runs. The 
calculation of/~ is based on time up to 0.7L, at which point saturation sets 
in. The calculations of )~ are based on time up to 20L. Normally, a single 
run of such length is enough to determine the average width at saturation. 

/~ appears to be strongly dependent on L for stronger correlations 
( f>2/3) .  02) The values in Table I are extrapolated from various system 
sizes for 1/L ~ O. Our error ranges are due to finite-size effects, and are 
much larger than those from linear least-square fits. Figure 3 shows the 
dependence of surface width co on time (average height) for chosen values 
of f .  Note a slight upward curvature, more pronounced for f = 1, which is 
opposite to finite-size effects (saturation). This tendency will reappear 
dramatically in Model 2. In fact, for all f >  1/4 there appears to exist a 
regime of random deposition for very short times, while for f~< 1/4 there 
is none. Thus, we quote the results of the fits excluding the random deposi- 
tion regime and the saturation regime. The remaining part is quite suf- 
ficient for a good fit, and the results are convincing, since they are opposite 

Table II. Values Obtained for X: Comparison wi th  Theoretical Predictions 
and Ballistic Deposition 

Correlation Predicted Ballistic 
exponent f p =f/2 value (m deposition (3) Model 1 

Uncorrelated 
0 0 1/2 0.475 0.51 _+ (0.0t) 

1/4 1/8 1/2 0.511 ___ (0.004) 0.58 __+ (0.05) 
!/2 1/4 1/2 0.530 + (0.005) 0.65 _+ (0.10) 
2/3 1/3 0.552 - -  0.73 _ (0.15) 
3/4 3/8 0.583... 0.615 __+ (0.009) 0.85 _+ (0.20) 

1 1/2 0.666... 0.652 _+ (0.005) 1.003 + (0.002) (13) 
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Fig. 3. 
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to the tendency of finite-size effects to decrease the apparent short-time 
exponent/?. 

By comparing our results to the predicted values (11) via f =  2p and to 
the ballistic deposition simulations, (3) we conclude that there is obviously 
a disagreement for strongly correlated noise. Our results are not in agree- 
ment with the prediction (11) even for weakly correlated noise ( f <  1/2), 
though we get a good estimate of RSOS for uncorrelated noise. The dis- 
turbing possibility that Z may exceed 1 for f = 1 may be discarded in view 
of our new large-scale simulations. (13) In fact, our preliminary results based 
on sizes up to L = 10,000 confirm the results of this paper, and indicate 
that Z = 1 and/~ = 1 at f =  1. u3) Altogether, we have established the depar- 
ture of Model 1 from both theoretical prediction m) and numerical simula- 
tions. (3) There may be a number of reasons for correlated RSOS deposition 
to belong to a new universality class: 

1. Model 1, being a restricted deposition model, may not correspond 
to spatially correlated noise models (first case): temporal noise 
correlations may become important. 

2. The higher nonlinear terms may be called for at f = 1: the height 
constraint is similar to introducing an additional operator which 
becomes relevant at f >1 1. 

3. The comparison based on f = 2p may not be valid in general, or, 
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in particular, for RSOS; thus, the comparison to the theoretical 
prediction (lu may not be valid; 

4. The catastrophic loss of growth sites in case of strongly correlated 
noise may lead to a deterministic, rather than noisy behavior. 

We will try to address all these possibilities in what follows. We note 
that the larger system sizes may not lead to significantly smaller exponents, 
since we found that even in the case of correlated random deposition, /~ 
may appear considerably larger than 1/2 for f >  1, but converges to its 
expected value after.a long time t (of the order of L). Since saturation in 
RSOS typically occurs before that, we might find the same effect of 
increased apparent short-time exponents considering larger system sizes. 
Our preliminary results u3) confirm this observation. 

The loss of growth sites increases rapidly with f (see Fig. 4). While for 
f~< 3/4 we observe the saturation of the number of growth sites G, which 
occurs almost instantaneously and indicates that G/L ~ const for L ~ 0% 
for f = 1 we observe a catastrophic loss of growth sites, so that we suggest 
that G/L ~ 0 for L ~ oo. The constant for f =  - 1  is about 1/2, for f =  3/4 
about 1/5, but for f = 1, G typically is of order 10 for all system sizes. 

We present now our results for Model 2 ( f  ~> 1). Though visually the 
surface profiles are indistinguishable from those of Model 1, the results for 
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Fig. 4. Dependence of number of growth sites G on time t for L =  I000: (Z l) f =  -1 ;  
( ~ ) f = Z / 3 ; ( x ) f = 3 / 4 ; ( + ) f = l  (Modell) .  
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fl are qualitatively different and quite unusual. For 1 ~<f~< 2 we get Z of 
about 1, Z = 1.05_ 0.05. There is much less fluctuation in the saturation 
regime for f~> 1, caused possibly by the fact that the growth sites become 
excessively rare. Moreover, we find that the number of growth sites G 
saturates at about the same time as the surface width. The saturation value 
of G does not seem to depend much on L or f ,  and is typically of order 10. 
This prompts us to conclude that G/L tends to 0 as L ~ oo for f ~> 1. This 
feature distinguishes the RSOS model from other correlated deposition 
models. 

We had to conclude that the dependence of the surface width on time 
for t ~ L z does not obey a single scaling law. Our log-log plots exhibit per- 
sistent upward curvature up to the saturation regime. Roughly speaking, 
one can distinguish two regimes: for very short times fi ~ 1/2 and for much 
longer times, just before saturation, fl,,~ 1 (see Fig. 5). These regimes are 
more pronounced for f =  1 than for f >  1. The upward curvature was 
indicated for f =  1 in Model 1; thus, the algorithm of Model 2 seems only 
to enhance the same tendency for f~> 1. As we noted above, Model 2 was 
designed to enhance the growth dynamics of Model 1 for strongly 
correlated noise ( f  >~ 1). For  f >~ 1 the saturation occurs at the same time 
as in Model 1, and the saturation widths for f = 1 are comparable to those 
of Model 1. In summary, Model 2 exhibits a tendency for fl = 1 and )~ = 1 

Fig. 5. 
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Log-log plot of co vs. t for L = 1000; f = 1. Note  two regimes: fl ~ 1/2 and fl ~ 1 
(Model 2). 
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for f>~ 1. We suggest that the enhanced algorithm of Model 2 promotes 
temporal correlations even further, and thus leads to a very complex 
behavior at short times. However, Model 2 is quasideterministic and may 
lead to coalescence of mountains. Note that for a deterministic model in 
which only one mountain is grown, co ~ L, and thus the result/~ = 1 and 

= 1 for f>~ 1 is perhaps not too surprising. 

4. H E I G H T - H E I G H T  C O R R E L A T I O N S  FOR R A N D O M  
D E P O S I T I O N  W I T H  C O R R E L A T E D  NOISE 

In order to test numerically the conjecture f =  2p, (3) we have used the 
equation describing random deposition 

8h/Ot = ~l( x, t) (9) 

to find a direct relationship between the height-height correlations and the 
noise correlations. For spatially correlated noise (6) we find 

(~h(x, t)6h(x', t) ) ~ t l x - x ' l  ~ (10) 

where 6 h = h - ( h ) ;  t as usual stands for ( h )  and A = 2 p - 1 .  Thus, the 
height-height spatial correlation function provides a way to measure A 
directly from the expression 

(h(x, t) h(x', t) ) / ( h  ) -  (h ) ~  I x - x ' l  ~ (11) 

calculated for each value of f .  We can determine then if indeed f = A + 1, 
as is implied by the conjecture f =  2p. A typical graph of the expression 
(11) vs. I x - x ' l  is shown in Fig. 6. The negative values are perhaps not sur- 
prising, since due to periodic boundary conditions, the total area under the 
curve needs to be zero. However, the curve as a whole does not exhibit a 
single scaling law. We were able to fit only the first 15 data points, and 
indeed found that f ~ 2 p  for f <  1. Note, however, that the noise-noise 
correlations (6) are supposed to occur asymptotically for large Ix-xt l  .(11) 
Moreover, 2p - 1 becomes positive for p > 1/2 and thus we should observe 
the expression (11 ) to increase for f > 1. We have never witnessed this to 
occur (see Fig. 6). Thus, the identity f =  2p appears doubtful even for 
unrestricted growth, uncomplicated by the onset of the temporal noise 
correlations. Any comparison of the discrete correlated deposition models 
of the types of refs. 1 and 3 to the theoretical prediction (11) cannot be made 
consistently without the understanding of the relationship between f and p. 
One might speculate that even in random correlated deposition the tem- 
poral noise correlations are still present, that they are intrinsic to the 
correlated deposition algorithm itself. The question of connecting the 
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height-height correlations in the correlated deposition process to noise 
correlations thus remains open. 

5. C O N C L U S I O N S  

In summary, we have observed a considerable departure in the RSOS 
model with correlated noise from both theory (u) and earlier numerical 
simulations. ~ We have suggested a number of reasons for such a departure 
and have analyzed the growth behavior and height-height correlation func- 
tions for the first time in this context. In conclusion, we conjecture that the 
temporal noise correlations are inherently present in both our models, thus 
making the correlated RSOS deposition process rather complex and worth 
further study. We note that, unlike the fractal dimension of growth 
perimeters (1) which started to cross over toward the short-range regime at 
f = 1, the surface roughness exponents Z and # seem to conclude this cross- 
over at f =  1. Our results suggest that both exponents approach 1 at f = 1, 
and that the behavior does not change qualitatively for f > 1. The height 
restrictions seem to be overwhelming in this regime. It seems plausible that 
the influence of an additional operator introduced by such constraints is 
further promoted and finally made relevant by strongly correlated noise. 
Finally, we have studied numerically the direct relationship of noise-noise 
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correlation strength to f, and have found a comparison of discrete growth 
models (1'3/to theory (11) so far unjustified. 

NOTE ADDED IN PROOF 

A new theoretical prediction was recently brought to our attention 
(Y. C. Zhang, private communication, 1990) based on replica method and 
considered "exact": /~ = (1 + 2p)/(3 + 2p) for 0 < p < 1/2. We note that if 
one follows the comparison f =  2p, our results agree with this new predic- 
tion for weakly correlated noise (p < 1/4). Thus, we may conclude that the 
time correlations which build up in the process of sequential deposition 
become relevant only for strong noise correlations. However, we remind 
that the physical meaning of increasing p from 0 (uncorrelated noise) to 1/2 
(limit of long-range correlations) is totally different from that of increasing 
f f rom - 1  (uncorrelated deposition) to 1 (short-range limit for deposition). 
As both of these processes seem to lead to increased roughness, we feel 
that an agreement found may be coincidental. (14~ We plan to proceed with 
a new simultaneous deposition algorithm aiming at the direct comparison 
with the prediction of Zhang. 
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